Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Chem Commun (Camb) ; 59(97): 14443-14446, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37982297

RESUMO

High-performance SERS chips via self-assembled hollow Ag octahedra on PDMS were employed to achieve the sensitive identification and detection of antibiotic residues. The developed SERS chips were successfully applied in the detection of ciprofloxacin (CIP), amoxicillin (AMX) and cefazolin (CZL) in wastewater and tap water samples, as well as enrofloxacin (ENR) in milk, demonstrating the sensitive determination of antibiotics in the real environment. From this perspective, these SERS chips are expected to expand the on spot sensitive detection and identification field of antibiotic residues.


Assuntos
Antibacterianos , Ciprofloxacina , Animais , Antibacterianos/análise , Enrofloxacina/análise , Amoxicilina , Leite/química , Análise Espectral Raman
2.
Food Chem ; 429: 136816, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459713

RESUMO

Antibodies and labels were typically non-oriented conjugated in conventional immunochromatographic assays (ICAs). In this work, a C-terminal cysteine-tagged recombinant protein A (rPA) was conjugated in an oriented manner onto aggregation-induced emission fluorescence microsphere (AIEFM). The Fc fragment of anti-enrofloxacin monoclonal antibody (anti-ENR mAb) was then conjugated onto the rPA. The resulting oriented mAb-AIEFM probe was used in an ENR-ICA for the rapid detection of ENR, a widely abused animal drug. The ENR-ICA with the oriented probe saved 66.7% of anti-ENR mAb and 25% of ENR-bovine serum albumin, and had a limit of detection of 0.035 ng/mL, compared with 0.079 ng/mL for the non-oriented probe. The corresponding linear ranges of the ENR-ICA based on the oriented and non-oriented probes were 0.25-10 ng/mL and 0.1-2.5 ng/mL, respectively. This novel ICA based on the oriented probe has the potential to be used for sensitive and rapid detection in food safety.


Assuntos
Anticorpos , Animais , Enrofloxacina/análise , Microesferas , Imunoensaio , Fenômenos Químicos
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122985, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311364

RESUMO

Water-soluble AgInS2 (AIS) quantum dots (QDs) were successfully prepared through the one-pot water phase method with thioglycolic acid (TGA) as the stabilizing agent. Because enrofloxacin (ENR) effectively quenches the fluorescence of AIS QDs, a highly-sensitive fluorescence detection method is proposed to detect ENR residues in milk. Under optimal detection conditions, there was a good linear relationship between the relative fluorescence quenching amount (ΔF/F0) of AgInS2 with ENR and ENR concentration (C). The detection range was 0.3125-20.00 µg/mL, r = 0.9964, and the detection limit (LOD) was 0.024 µg/mL (n = 11). The average recovery of ENR in milk ranged from 95.43 to 114.28%. The method established in this study has advantages including a high sensitivity, a low detection limit, simple operation and a low cost. The fluorescence quenching mechanism of AIS QDs with ENR was discussed and the dynamic quenching mechanism of light-induced electron transfer was proposed.


Assuntos
Pontos Quânticos , Animais , Enrofloxacina/análise , Corantes Fluorescentes/química , Água/química , Leite/química
4.
J Environ Manage ; 341: 118048, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141721

RESUMO

Antibiotic residues in lake ecosystems have been widely reported; however, the vertical distribution of antibiotics in lake sediment profiles have rarely been examined. This study systematically revealed the vertical distribution pattern, sources, and risks of antibiotics in sediments of four typical agricultural lakes in central China. Nine of 33 target antibiotics were detected with a total concentration range of 39.3-18,250.6 ng/g (dry weight), and the order of average concentration was erythromycin (1447.4 ng/g) > sulfamethoxazole (443.7 ng/g) > oxytetracycline (62.6 ng/g) > enrofloxacin (40.7 ng/g) > others (0.1-2.1 ng/g). The middle-layer sediments (9-27 cm) had significantly higher antibiotic detected number and concentration than those in the top layer (0-9 cm) and bottom layer (27-45 cm) (p < 0.05). Correlation analysis showed that significant relationships existed between antibiotic concentrations and the octanol-water partition coefficients (Kow) of antibiotics (p < 0.05). Redundancy analysis indicated that Pb, Co, Ni, water content, and organic matter (p < 0.05) jointly affected the distribution of antibiotics in sediment profiles. Risk assessment showed that the highest potential ecological and resistance selection risks of antibiotics occurred in the middle-layer sediments, and oxytetracycline, tetracycline, and enrofloxacin had the most extensive potential risks in the sediment profiles. Additionally, the positive matrix factorization model revealed that human medical wastewater (54.5%) contributed more antibiotic pollution than animal excreta (45.5%) in sediment. This work highlights the inhomogeneous distribution of antibiotics in sediment profiles and provides valuable information for the prevention and control of antibiotic contamination in lakes.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Animais , Humanos , Antibacterianos/análise , Lagos/análise , Lagos/química , Ecossistema , Oxitetraciclina/análise , Enrofloxacina/análise , Água/análise , Medição de Risco , China , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Sedimentos Geológicos/química
5.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677831

RESUMO

In this work, we employed EEM-PARAFAC (fluorescence excitation-emission matrices-parallel factor analysis) as a low-cost tool to study the oxidation pathways of (fluoro)quinolones. Amounts of 12.5 µM of enrofloxacin (ENR), ciprofloxacin (CIP), ofloxacin (OFL), oxolinic acid (OA), and flumequine (FLU), as individual solutions, were irradiated under UVA light. A 5-component PARAFAC model was obtained, four of them related to the parent pollutants, named as ENR-like (including CIP), OFL-like, OA-like, and FLU-like, and an additional one related to photoproducts, called ENRox-like (with an emission red-shift with respect to the ENR-like component). Mass spectrometry was employed to correlate the five PARAFAC components with their plausible molecular structures. Results indicated that photoproducts presenting: (i) hydroxylation or alkyl cleavages exhibited fingerprints analogous to those of the parent pollutants; (ii) defluorination and hydroxylation emitted within the ENRox-like region; (iii) the aforementioned changes plus piperazine ring cleavage emitted within the OA-like region. Afterwards, the five antibiotics were mixed in a single solution (each at a concentration of 0.25 µM) in seawater, PARAFAC being also able to deconvolute the fingerprint of humic-like substances. This approach could be a potential game changer in the analysis of (fluorescent) contaminants of emerging concern removals in complex matrices, giving rapid visual insights into the degradation pathways.


Assuntos
Quimiometria , Poluentes Químicos da Água , Fotólise , Espectrometria de Fluorescência/métodos , Fluoroquinolonas/química , Ciprofloxacina/química , Enrofloxacina/análise , Ofloxacino/análise , Espectrometria de Massas , Ácido Oxolínico , Poluentes Químicos da Água/química , Análise Fatorial , Substâncias Húmicas/análise
6.
Chemosphere ; 308(Pt 3): 136403, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122743

RESUMO

A methodology for the high-precision prediction and risk assessment of antibiotics at the watershed scale was established. Antibiotic emission inventory and attenuation processes were integrated into the MIKE 11 model to predict the spatiotemporal distribution of norfloxacin, ofloxacin, enrofloxacin, erythromycin, roxithromycin, and sulfamethoxazole in the Nanfei River watershed, China. Considering the variations in antibiotic removal in sewage treatment plants, manure composting, and lagoon systems, the high, medium, and low removal efficiencies of selected antibiotics across China were obtained and used as the best, expected, and worst scenarios, respectively, to evaluate the uncertainty of antibiotic emissions. The predicted concentrations were comparable to antibiotic measurements after flow calibration. The prediction results showed that the highest concentration exposures were mainly concentrated in urban areas with a dense population. Flow variations controlled the temporal distribution characteristics of antibiotics via the dilution effect, and the concentrations of antibiotics in the dry season were 3.1 times higher than those in the wet season. The median concentrations of norfloxacin and erythromycin ranged from 111.36 ng/L to 592.33 ng/L and 106.63 ng/L to 563.01 ng/L, respectively, which both posed a high risk to cyanobacteria and a medium risk to spreading antibiotic resistance. Scenario analysis further demonstrated that high removal efficiencies of these antibiotics can considerably reduce the potential ecotoxicity risks and bacterial resistance selection. The developed methodology for predicting the distribution and risk of antibiotics was suitable for the risk assessment and control strategy of human- and livestock-sourced pollutants.


Assuntos
Roxitromicina , Poluentes Químicos da Água , Antibacterianos/análise , China , Enrofloxacina/análise , Monitoramento Ambiental/métodos , Eritromicina , Humanos , Hidrodinâmica , Esterco/análise , Norfloxacino/análise , Ofloxacino/análise , Medição de Risco , Rios , Esgotos/análise , Sulfametoxazol , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 852: 158530, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063953

RESUMO

Rivers are important environmental sources of human exposure to antibiotic resistance. Many factors can change antibiotic resistance in rivers, including bacterial communities, human activities, and environmental factors. However, the systematic comparison of the differences in antibiotics resistance and risks between urban rivers (URs) and rural rivers (RRs) in a pharmaceutical industry dominated city is still rare. In this study, Shijiazhuang City (China) was selected as an example to compare the differences in antibiotics resistance and risks between URs and RRs. The results showed higher concentrations of total quinolones (QNs) antibiotics in both water and sediment samples collected from URs than those from RRs. The subtypes and abundances of antibiotic resistance genes (ARGs) in URs were significantly higher than those in RRs, and most emerging ARGs (including OXA-type, GES-type, MCR-type, and tet(X)) were only detected in URs. The ARGs were mainly influenced by QNs in URs and social-economic factors (SEs) in RRs. The composition of the bacterial community was significantly different between URs and RRs. The abundance of antibiotic-resistant pathogenic bacteria (ARPBs) and virulence factors (VFs) were higher in URs than those in RRs. Therein, 371 and 326 pathogen types were detected in URs and RRs, respectively. Most emerging ARGs showed a significantly positive correlation with priority ARPBs. Variance partitioning analysis revealed that SEs were the main driving factors of ARGs (80 %) and microbial communities (92 %) both in URs and RRs. Structural equation models indicated that antibiotics (QNs) and microbial communities were the most direct influence of ARGs in URs and RRs, respectively. The cumulative resistance risk of QNs was high in URs, but relatively low in RRs. Enrofloxacin and flumequine posed the highest risk in water and sediment, respectively. This study could help us to better manage and control the risk of antibiotic resistance in different rivers.


Assuntos
Monitoramento Ambiental , Rios , Humanos , Rios/química , Enrofloxacina/análise , Monitoramento Ambiental/métodos , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/análise , Bactérias/genética , Indústria Farmacêutica , Água/análise , Fatores de Virulência , China
8.
Environ Res ; 214(Pt 2): 113924, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35868578

RESUMO

BACKGROUND: Although animal experiments found that antibiotic exposure during early life increased adiposity, limited human epidemiological evidence is available for the effects of veterinary antibiotic exposure on children's growth and development. OBJECTIVE: This study was conducted to examine the body burden of fluoroquinolones in northern Chinese children and assess its association with growth and development. METHODS: After recruiting 233 children aged 0-15 years from 12 different sites in northern China in 2020, we measured urinary concentrations of 5 respective fluoroquinolones (fleroxacin, ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) by high performance liquid chromatography. Categories of children's growth and development were identified based on the Z score of body mass index. The health risks of individual and combined antibiotic exposure were estimated by the hazard quotient (HQ) and hazard index (HI), respectively. The association between children's growth and development with antibiotic concentrations was evaluated via multiple logistic regression analysis. RESULTS: In total, 4 antibiotics, fleroxacin, ofloxacin, ciprofloxacin, and enrofloxacin, were found in urine samples of northern Chinese children at an overall frequency of 57.08%. Due to diet and economic differences, antibiotic concentrations in urine samples differed by study area, and the highest concentrations were found in Tianjin, Henan, and Beijing. The percentage of the participants with HQ > 1 caused by ciprofloxacin exposure was 20.61%, and the HI values in 23.18% of samples exceeded 1, suggesting potential health risks. The odds ratio (95% confidence interval) of overweight or obesity risk of tertile 2 of enrofloxacin was 3.01 (1.12, 8.11), indicating an increase in overweight or obesity risk for children with middle-concentration enrofloxacin exposure. CONCLUSION: This is the first study to show a positive association of enrofloxacin internal exposure with overweight or obesity risk in children, demonstrating that more attention should be given to the usage and disposal of fluoroquinolones to safeguard children's health.


Assuntos
Monitoramento Biológico , Fluoroquinolonas , Animais , Antibacterianos/análise , Antibacterianos/toxicidade , Criança , China/epidemiologia , Ciprofloxacina , Enrofloxacina/análise , Fleroxacino/análise , Fluoroquinolonas/análise , Humanos , Obesidade , Ofloxacino/análise , Sobrepeso
9.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889250

RESUMO

Manure is a major source of soil and plant contamination with veterinary drugs residues. The aim of this study was to evaluate the uptake of 14 veterinary pharmaceuticals by parsley from soil fertilized with manure. Pharmaceutical content was determined in roots and leaves. Liquid chromatography coupled with tandem mass spectrometry was used for targeted analysis. Screening analysis was performed to identify transformation products in the parsley tissues. A solid-liquid extraction procedure was developed combined with solid-phase extraction, providing recoveries of 61.9-97.1% for leaves and 51.7-95.6% for roots. Four analytes were detected in parsley: enrofloxacin, tylosin, sulfamethoxazole, and doxycycline. Enrofloxacin was detected at the highest concentrations (13.4-26.3 ng g-1). Doxycycline accumulated mainly in the roots, tylosin in the leaves, and sulfamethoxazole was found in both tissues. 14 transformation products were identified and their distribution were determined. This study provides important data on the uptake and transformation of pharmaceuticals in plant tissues.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Drogas Veterinárias , Doxiciclina/análise , Enrofloxacina/análise , Poluentes Ambientais/análise , Esterco/análise , Petroselinum , Solo/química , Poluentes do Solo/análise , Extração em Fase Sólida/métodos , Sulfametoxazol , Tilosina , Drogas Veterinárias/análise
10.
Biosens Bioelectron ; 214: 114527, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35797935

RESUMO

Enrofloxacin (ENR) is a fluoroquinolone antibiotic that has been used to treat bacterial diseases in aquaculture extensively. ENR might accumulate in the body and cause severe liver damage. Therefore, it is necessary to develop a method for rapid detection of ENR. Herein, amine monomers with different numbers of amino groups, charge and length (1,3-diaminoguanidine monohydrochloride: DMGH, triaminoguanidine hydrochloride: TAGH, hydrazine: H) were used to regulate the fluorescence of benzotrithiophene tricar-baldehyde (BTT)-based covalent organic frameworks (COFs) for real-time visual onsite assays of ENR for the first time. The C3 symmetric COFBTT-TAGH only had one emission peak at 540 nm, while C6 symmetric COFBTT-DMGH and COFBTT-H had two emission peaks. COFBTT-TAGH could achieve the color transition from green to blue with increasing ENR. Thus test paper and gel were designed as real-time detection tools, combined with a smartphone APP. The detection limits obtained by RGB analysis were 106.2 nM for test paper and 26.00 nM for test gel, respectively. This method was applied to detect ENR in fish and clam metabolite successfully. This work also provides important reference to regulate fluorescence of COFs according to actual application.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Animais , Antibacterianos/análise , Aquicultura , Enrofloxacina/análise , Fluoroquinolonas/análise
11.
J Agric Food Chem ; 70(27): 8441-8450, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35776853

RESUMO

In this work, metabolomic profile changes in milk from cows affected by mastitis and treated with enrofloxacin (ENR) have been studied using LC-HRMS techniques. Principal component analysis was applied to the obtained results, and the interest was focused on changes affecting compounds without a structural relationship to ENR. Most of the compounds, whose concentrations were modified as a result of the pharmacological treatment and/or the pathological status, were related to amino acids and peptides. Compounds that may become possible biomarkers for either disease or treatment have been detected. Additionally, the alterations caused by thermal processes, such as those applied to milk before consumption, on the identified metabolites have also been considered.


Assuntos
Mastite Bovina , Leite , Animais , Bovinos , Enrofloxacina/análise , Enrofloxacina/metabolismo , Enrofloxacina/uso terapêutico , Feminino , Fluoroquinolonas/análise , Mastite Bovina/metabolismo , Leite/química , Temperatura
12.
Chemosphere ; 301: 134667, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35460676

RESUMO

A synergetic system of water falling film dielectric barrier discharge (DBD) plasma and persulfate (PS) was established and applied to enhance the enrofloxacin (EFA) degradation in this study. The simultaneous existence of electrons, reactive species, heat and UV-visible light in the DBD plasma system were utilized together to activate the PS to form SO4-· and other reactive oxygen species (ROS), and then worked in synergy with the DBD plasma to oxidize the EFA. The obtained results verified that there was a significant increase in the degradation percentages of EFA (20 mg L-1) in the DBD/PS system, and the trend was more obvious under the condition of larger discharge power input. When 0.8 mM PS was added into the DBD system with 0.8 kW discharge power, the degradation percentage of EFA could reach 99.35% after 60 min treatment, the corresponding synergetic factor (SF) was 7.94. Analysis of the O3 and the H2O2 concentrations in the DBD plasma system before and after the PS addition explained the activation of the PS by the HO·. The quenching experiments on reactive species suggested that SO4-·, HO·, and 1O2 were all important reactive species for EFA degradation. The intermediates formed by the EFA degradation were detected and the degradation pathways were speculated. Results of toxicity analysis illustrated that the toxicity of the initial EFA solution decreased after degradation in the synergetic system of DBD/PS.


Assuntos
Poluentes Químicos da Água , Água , Enrofloxacina/análise , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água/análise
13.
Mikrochim Acta ; 189(3): 95, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142925

RESUMO

Molecularly imprinted polymers were synthesized by gel-sol method with multi-walled carbon nanotubes as support and enrofloxacin as a template and further modified on the surface of glassy carbon electrode to construct a molecularly imprinted electrochemical sensor. The performance of the imprinted electrochemical sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The influence of imprinted polymers amount, electrolyte pH, and incubation time on the sensor performance was investigated for the detection of enrofloxacin. Under the optimal experimental conditions in a three-electrode system with the modified electrode as the working electrode the differential pulse voltammetry response current of the sensor had a good linear relationship at 0.2 V (vs. saturated calomel reference electrode) with the enrofloxacin concentration within 2.8 pM-28 µM and the limit of detection of the method was 0.9 pM. The competitive interference experiment showed that the imprinted electrochemical sensor could selectively recognize enrofloxacin. The method was applied to analyze spiked natural seawater, fish, and shrimp samples. The recovery was 96.4%-102%, and RSD was less than 4.3% (n = 3), indicating that the proposed imprinted electrochemical sensor was suitable for the determination of trace enrofloxacin in marine environment samples.


Assuntos
Técnicas Eletroquímicas , Enrofloxacina/análise , Polímeros Molecularmente Impressos/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
14.
Mikrochim Acta ; 189(3): 96, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147788

RESUMO

A novel fluorescence platform was fabricated for enrofloxacin determination by using cDNA-modified dipeptide fluorescence nanoparticles (FDNP-cDNA) and aptamer-modified magnetic Fe3O4 nanoparticles (Fe3O4-Apt). The FDNP were prepared via tryptophan-phenylalanine self-assembling. When magnetic Fe3O4-Apt incubated with standard solution or sample extracts, the target enrofloxacin was selectively captured by the aptamer on the surface of the Fe3O4 nanoparticles. After removing interference by washing with phosphate-buffered saline, the FDNP-cDNA was added, which can bind to the aptamer on the surface of the Fe3O4 nanoparticles not occupied by the analyte. The higher the concentration of the target enrofloxacin in the standard or sample solution is, the less the FDNP-cDNA can be bound with the Fe3O4 nanoparticles, and the more the FDNP-cDNA can be observed in the supernatant. Fluorescence intensity (Ex/Em = 310/380 nm) increased linearly in the enrofloxacin concentration range 0.70 to 10.0 ng/mL with a detection limit of 0.26 ng/mL (S/N = 3). Good recoveries (88.17-99.30%) were obtained in spiked lake water, chicken, and eel samples with relative standard deviation of 2.7-6.2% (n = 3).


Assuntos
Aptâmeros de Nucleotídeos/química , Dipeptídeos/química , Enrofloxacina/análise , Corantes Fluorescentes/química , Nanopartículas/química , Poluentes Químicos da Água/análise , Animais , Técnicas Biossensoriais , Galinhas , DNA Complementar/química , Enguias , Lagos , Espectrometria de Fluorescência
15.
J Dairy Sci ; 105(3): 1999-2010, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998562

RESUMO

Enrofloxacin, a veterinary antibiotic that persists in food, poses a risk to human health. Here, a monoclonal antibody against enrofloxacin, 1H12, was prepared based on the hapten ENR-1, and showed excellent sensitivity with a 50% inhibitory concentration (IC50) of 0.03 ng/mL. Using this antibody, 2 lateral-flow immunochromatographic assays were developed for determination of enrofloxacin in egg, milk, honey, and chicken meat samples. The detection ranges (IC20-IC80) were 0.16-0.82 ng/g, 0.24-1.8 ng/g, 0.25-3.6 ng/g, and 0.61-3.9 ng/g by colloidal gold-immunochromatographic sensor (CG-ICS) analysis, and 0.022-0.42 ng/g, 0.054-0.42 ng/g, 0.069-1.4 ng/g, and 0.19-2.2 ng/g by Eu-fluorescence-immunochromatographic sensor (EF-ICS) analysis. The intraassay and interassay recovery rates were 88.9 to 108.5% with coefficients of variation of 1.3 to 7.0% by CG-ICS analysis, and 88.6 to 113.6% with coefficients of variation of 1.3 to 8.1% by EF-ICS analysis. Thus, our newly developed ICS are sensitive and reliable, providing an option for rapid quantitative detection of enrofloxacin in food samples.


Assuntos
Mel , Leite , Animais , Galinhas , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/veterinária , Enrofloxacina/análise , Mel/análise , Imunoensaio/métodos , Imunoensaio/veterinária , Limite de Detecção , Carne/análise , Leite/química
16.
Molecules ; 26(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34577155

RESUMO

An innovative, rapid and stable method for simultaneous determination of three tetracycline (oxytetracycline, tetracycline and doxycycline) and two fluoroquinolone (ciprofloxacin and enrofloxacin) residues in poultry eggs by ultra-high performance liquid chromatography-fluorescence detection (UPLC-FLD) was established and optimized. The samples were homogenized and extracted with acetonitrile/ultrapure water (90:10, v/v) and then purified by solid-phase extraction (SPE). LC separation was achieved on an ACQUITY UPLC BEH C18 column (1.7 µm, 2.1 mm × 100 mm), and the mobile phase was composed of acetonitrile and a 0.1 mol/L malonic acid solution containing 50 mmol/L magnesium chloride (the pH was adjusted to 5.5 with ammonia). When the five target drugs were spiked at the limit of quantification, 0.5 times the maximum residue limit (MRL), 1.0 MRL and 2.0 MRL, the recoveries were above 83.5% and the precision ranged from 1.99% to 6.24%. These figures of merit complied with the parameter validation regulations of the EU and U.S. FDA. The limits of detection and quantifications of the targets were 0.1-13.4 µg/kg and 0.3-40.1 µg/kg, respectively. The proposed method was easily extended to quantitative analyses of target drug residues in 85 egg samples, thus demonstrating its reliability and applicability.


Assuntos
Antibacterianos/análise , Cromatografia Líquida de Alta Pressão/métodos , Ovos/análise , Fluoroquinolonas/análise , Espectrometria de Fluorescência/métodos , Tetraciclinas/análise , Animais , Ciprofloxacina/análise , Doxiciclina/análise , Resíduos de Drogas/análise , Enrofloxacina/análise , Contaminação de Alimentos/análise , Limite de Detecção , Oxitetraciclina/análise , Aves Domésticas , Reprodutibilidade dos Testes , Extração em Fase Sólida , Tetraciclina/análise , Drogas Veterinárias/análise
17.
Int J Biol Macromol ; 191: 171-181, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34509521

RESUMO

In this study, cattail was researched as a natural cellulose source to extract cellulose. Dewaxing, alkali and bleaching treatments were carried out for the cattail fibers (CFs). The FTIR, SEM and XRD results indicated that hemicellulose and lignin were successfully removed from the CFs, and the content of cattail cellulose increased from 41.66 ± 1.11% to 89.72 ± 1.07%. Subsequently, cellulose aerogel was prepared by the extracted cattail cellulose. The Zeolitic imidazolate framework-8 (ZIF-8) was uniformly loaded onto the surface of cellulose aerogel by the in situ growth, and ZIF-8 Cattail Cellulose Aerogel (ZCCA) was finally prepared. The SEM, FTIR, XRD and TGA results further confirmed the successful preparation of ZCCA. Additionally, the results of the adsorption experiment showed that ZCCA had excellent adsorption performance for enrofloxacin, and the maximum adsorption capacity of enrofloxacin reached 172.09 mg·g-1 while showing good reusability. The adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm model. Thermodynamic studies showed that the adsorption of enrofloxacin was a spontaneous endothermic reaction and that the adsorption mechanism involves the interaction of hydrogen bonds, electrostatic and π-π stacking.


Assuntos
Antibacterianos/química , Celulose/análogos & derivados , Enrofloxacina/química , Nanogéis/química , Purificação da Água/métodos , Adsorção , Antibacterianos/análise , Enrofloxacina/análise , Ligação de Hidrogênio , Imidazóis/química , Estruturas Metalorgânicas/química , Typhaceae/química , Águas Residuárias/química
18.
Se Pu ; 39(6): 633-641, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34227324

RESUMO

In order to ensure the safety of animal food and regulate the application of veterinary drugs, it is necessary to strictly monitor their content, and to constantly improve the methods used to detect non-specific, illegally added substances in veterinary drugs. A study about the screening, analysis, and confirmation of illegal additives in enrofloxacin powder (used for aquaculture) using non-targeted analysis technology was introduced. First, an enrofloxacin powder test solution under acidic conditions was prepared by adding formic acid, and an enrofloxacin powder test solution under alkaline conditions was prepared by adding sodium carbonate. An ultra-performance liquid chromatography with photodiode array detector (UPLC-PDA) was used to assay the test solutions for the presence of unknown additives. Results revealed two high-response unknown peaks in the acidified test solution, with retention times of 1.870 min and 5.122 min respectively. In the alkalized test solution, only one high-response unknown peak was found, with a retention time of 5.122 min. The ultraviolet spectrum characteristic peaks at 5.122 min in acidified and alkalized test solutions were similar, but the peak area in the alkalized test solution was almost ten times that in the acidified solution. Two potential unknown substances were detected. Unknown substance 1 (1.870 min) and unknown substance 2 (5.122 min) may transform under acidic or alkaline conditions. Ultra-performance liquid chromatography-time of flight high resolution mass spectrometry (UPLC-TOF-HRMS) was used to analyze the unknown compounds in more detail. The acidified and alkalized test solutions were detected in the positive and negative ion modes of mass spectrometry, respectively. Accurate mass of the precursor ion, characteristics of secondary ion fragments, and isotopic intensity ratio of the two unknown substances were collected. This information was imported into SCIEX OS software. The molecular formula of the parent ion of unknown substance 2 was found to fit to C11H8O2, and its secondary fragment structure may contain a benzene ring and two carbonyl groups, with a propylene structure connected to them through ring formation. From this, unknown substance 2 was presumed to be a menadione. The molecular ion peak of unknown substance 1 was found to fit to C11H9O5S-, only HSO3- was collected in the secondary fragments, and the missing part was consistent with unknown substance 2. Considering the most common derivatives of menadione, unknown substance 1 can be proposed to be menadione sodium bisulfite. Finally, we used menadione and menadione sodium bisulfite as reference substances in a comparative study. The same treatment method was used to prepare menadione, menadione sodium bisulfite reference solution, and enrofloxacin powder test solution. After UPLC-PDA detection, unknown substance 1 and menadione sodium bisulfite, unknown substance 2 and menadione, were found to have similar retention times and UV spectra. When the reference solution was added to the enrofloxacin powder test solution, the peak purity of the unknown substance did not change, and were all single peaks. UPLC-TOF-HRMS analysis revealed that the retention time of unknown substance 1 was consistent with that of sodium menadione bisulfite: compared to its accurate mass number in theory, the mass accuracy error was 1.0×10-6, and the matching degree of fragmentation information in the library was 100%. The retention time of unknown substance 2 was same as the menadione: compared to its accurate mass number in theory, the mass accuracy error was 0.6×10-6, and the matching degree of fragmentation information in the library was 99.7%. The structures of unknown substances 1 and 2 were confirmed. Menadione sodium bisulfite is known to participate in the synthesis of thrombin in the liver, and also promotes the formation of prothrombin, and accelerates coagulation. The indication of enrofloxacin powder (used for aquaculture) is the treatment of hemorrhage and sepsis in aquaculture animals such as fish and eel. The pharmacological effects of the two drugs correspond to each other, which can cause producers to take risks and add them illegally. With the strict supervision and severe restrictions on the addition of veterinary drugs, illegal additives are becoming more and more subtle. Conventional targeted analysis does not always meet the monitoring requirements. In this paper, the non-targeted analysis of unknown substances using UPLC-PDA combined with UPLC-TOF-HRMS is described in detail. The results may provide a technical reference for screening and identifying illegal additives in drugs, food, health care products, cosmetics, and pesticides.


Assuntos
Contaminação de Medicamentos , Enrofloxacina/análise , Praguicidas/análise , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Pós
19.
J Chromatogr A ; 1653: 462411, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34325296

RESUMO

In this work, novel dummy molecularly imprinted membranes (MIMs) were fabricated using the nylon-66 (NY-66) membranes as the subtracts based on an eco-friendly "sandwich" technology with less consumption of organic reagents at mild conditions for recognition and extraction of enrofloxacin (ENR) and ciprofloxacin (CIP) in egg samples. The prepared MIMs were characterized by SEM, ATR-FTIR and TGA, showing the successful construction of uniform and porous polymers on the surface of membranes. A series of adsorption affinity tests were investigated, indicating the prepared materials had specific recognition capacity and excellent stability as novel sorbents. Furthermore, Box-Benhnken design (BBD) and single factor investigations were applied to optimize pretreatment procedures, coupling with Ultra High Performance Liquid Chromatograph (UHPLC) detection. The method showed a good correlation (r2>0.9999) within the linear range of 5.0~5000.0 µg kg-1, and limit of detection (LOD) of ENR and CIP were 0.3 and 0.7 µg kg-1, respectively. The mean recovery ranged from 84.5% to 97.0% within relative standard deviations (RSDs) of 10.2%. Finally, ENR and CIP were not detected in 3 batches of egg samples. The current study developed the dummy MIMs as sorbents combined with UHPLC analysis for extraction and detection of target analytes in food matrices.


Assuntos
Ciprofloxacina , Enrofloxacina , Membranas Artificiais , Impressão Molecular , Extração em Fase Sólida , Adsorção , Cromatografia Líquida de Alta Pressão , Ciprofloxacina/análise , Ciprofloxacina/isolamento & purificação , Enrofloxacina/análise , Enrofloxacina/isolamento & purificação , Extração em Fase Sólida/métodos
20.
Mikrochim Acta ; 188(6): 194, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34013434

RESUMO

The emergence and development of low-cost and high-efficiency nanozymes are promising to replace natural enzymes promoting the application of chemiluminescence immunoassays. Herein, a rapid and highly sensitive flow injection chemiluminescence immunoassay based on cobalt hydroxide (Co(OH)2) nanozyme was established to detect enrofloxacin (ENR) residues in food. In this system, Co(OH)2 nanosheets act as nanozymes to catalyze and amplify the chemiluminescence signal of the luminol-PIP-H2O2 system, as well as a carrier for immobilizing antibodies to form stable immunoprobes. In addition, carboxyl resin beads with good stability and biocompatibility were used as the base of the immunosensor to carry more coating antigens, based on the principle of competitive immunity and to achieve the rapid detection of ENR. Under optimal conditions, the linear working range is 0.0001 ~ 1000 ng/mL, and the limit of detection (LOD) is 0.041 pg/mL (S/N = 3). The method has been successfully applied to the analysis of aquatic products and poultry food. A non-enzyme immunosensor using Co(OH)2 nanosheets as antibody-conjugated carriers and peroxidase mimics for catalytic amplification of the chemiluminescence signal of luminol and using carboxyl resin beads as platform was designed to detect ENR residues in food.


Assuntos
Antibacterianos/análise , Cobalto/química , Enrofloxacina/análise , Hidróxidos/química , Imunoensaio/métodos , Nanoestruturas/química , Animais , Antibacterianos/imunologia , Anticorpos Imobilizados/imunologia , Catálise , Galinhas , Patos , Enrofloxacina/imunologia , Contaminação de Alimentos/análise , Peróxido de Hidrogênio/química , Iodobenzenos/química , Limite de Detecção , Luminescência , Substâncias Luminescentes/química , Medições Luminescentes , Luminol/química , Alimentos Marinhos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...